DOI: http://dx.doi.org/10.18782/2320-7051.2152

ISSN: 2320 – 7051 *Int. J. Pure App. Biosci.* **3 (6):** 137-149 (2015)

Research Article

Vesicular Arbuscular Mycorrhizal (VAM) Status of some medicinal plants of Gar-Panchakot hills in Purulia, West Bengal, India

Pampi Ghosh¹* and Nagendra Kumar Verma²

¹Dept. of Botany, Seva Bharati Mahavidyalaya, Kapgari, Paschim Medinipur, W.B, India ²Dept. of Botany & Forestry, Vidyasagar University, Midnapore, Paschim Medinipur, W.B., India *Corresponding Author E-mail: pampikapgari@gmail.com

ABSTRACT

Fifty four species of medicinal Plants were investigated for Vesicular-arbuscular mycorrhizal (VAM) status in Gar-Panchakot hills, in Dhara area of Purulia District of southwest Bengal. VAM was observed in almost all plants. Great variations were found in VAM infection percentage from plant to plant even from season to season. Plants in rainy season showed highest VAM infection percentage than winter and summer. Number of vesicles increased in winter but rainy season encouraged more arbuscules than vesicles. More than one type of mycorrhizal hyphae and vesicles were observed in majority of plants depending upon season and sites.

Key words: VA-Mycorrhizae, Root Colonization, Seasonal variations, medicinal plants

INTRODUCTION

VA mycorrhizae are associated with the roots of plants of natural and agricultural ecosystems⁴¹, including arid and semiarid areas^{8,40}. Their wide distribution is due to obligate mycotrophy of plants⁴². VA mycorrhizae play an essential role in nutrient transfer^{30,31,37} soil aggregation helps to obtain water , which is critical to plant survival and growth under dry condition²⁷, improvement of tolerance to drought and salinity^{1,4,13} and plant protection against pathogen^{17,20,21,38,39}. Medicinal plants constitutes about 10%-80% of world flora most of which are being harvested from the wild¹⁸. Associated VAM fungi with the medicinal plants not only enhances the growth of those medicinal plants but also improve the active principle contents of plants or plant parts^{5,29,36,45}.

The list of some common ethno-medicinal plant of Purulia district has been described by Chakraborty and Bhattacharjee⁹. The vegetation ecology of the Gar-Panchakot hill has been made by Das¹⁰, 2007. However no survey has so far been conducted on the VA mycorrhizal associsation of medicinal Plants of Dhara, Garh Panchakot, Purulia. Therefore an intensive study for consecutive two years was conducted in a preliminary attempt to observe the VA mycorrhizal status and seasonal variation of the VA mycorrhizae on the host medicinal plants.

Study Area and Climate

The study area was a Hill area at Gar-Panchakot of Purulia District in West Bengal which is adjacent to Dhanbad District of Jharkhand State. The site was in Dhara, which is situated on the foot hills of Garh Panchakot commonly called Panchet Hill.

Cite this article: Ghosh, P. and Verma, N.K., Vesicular Arbuscular Mycorrhizal (VAM) Status of some medicinal plants of Gar-Panchakot hills in Purulia, West Bengal, India, *Int. J. Pure App. Biosci.* **3**(6): 137-149 (2015). doi: http://dx.doi.org/10.18782/2320-7051.2152

Int. J. Pure App. Biosci. 3 (6): 137-149 (2015)

The area is filled with undulated strips under Chotanagpur Plateau, and the entire hill is covered with various types of plants *viz* herbs, shrubs, trees, climber and lianas. Dhara is a historical place and situated at the foot hill of Garh Panchacot hill. It is situated under Neturia community development block $(23^{\circ}39^{\circ}47)^{\circ}$ N and $86^{\circ}49^{\circ}37^{\circ}$ E) covering an area of 199.37 sq Km. The block comprises of seven grampanchayates viz. Vamuria, Digha, Guniaria, Janardandi, Raibandh, Saltore and Sarbari. The entry point is at Gobag, Ram Kanali which is the head quarter of this block. The temperature falls up to 7° C in winter and rises up to 40° in summer. The annual rainfall is approx. 170mm.The tenures of the seasons are as follows:

a. Monsoon (July, August, September and October); b. winter (November, December, January, and February) and c. summer (March, April, May and June) round the year followed by two consecutive years.

MATERIALS AND METHODS

The overall materials and methods are divided in to various sub-disciplines as mentioned below:

1. Collection and Sampling of Plant materials along with roots and rhizosphere soils:

Available and easy to uprooting medicinal plants with their intact roots and rhizospheric soil up to 10 cm depth was collected randomly from Dhara area in Gar Panchakot, Purulia. Periodic survey of two consecutive years (2012-13 to 2013-14) were undertaken to study the seasonal variations of mycorrhizal fungi and status of the same for the study area. Based on the climate three seasons were perceived in the field namely monsoon, winter and summer for study that recognised pattern of vegetation in the same area.

2. Working Principles of Materials:

Species wise fine feeder roots of the medicinal plants were collected and cut into approx. 1cm pieces. Fragments were washed under tap water properly. Root samples were processed as per cold treatment^{16,43,46}. Cleared root segments were stained by writing ink (Camel/Chelpark, Royal Blue ink) as a dye^{19,43,44}. Pigmented root segments were processed in freshly prepared alkaline H_2O_2 Solution at room temperature for 10 to 20 minutes or until roots are bleached⁴³.

3. Soil samples and Working Principle:

Rhizospheric soil samples were collected in clean plastic carry bags with tags. Each soil sample was spread on clean newspaper and was allowed to dry in air under shade of net house of Vidyasagar University. Pebbles and other unwanted matters were removed from the spread samples. Large lumps were broken with wooden roller or hand. After grinding soil samples were sieved through flour sieves and fine soils were stored in clean plastic carry bag/poly propylene bags with labelling tag for mycorrhizal fungal spore estimation and soil analysis in room temperature.

4. Estimation of root colonization:

VA-mycorrizal colonization in roots was assessed following slide method^{14,26}. Stained root pieces of approximately 1cm length were randomly placed on slide in groups of 5 to observe fungal hyphae, vesicles, arbuscules, coiled hyphae and other related structures under light microscope (15×10 and 15×40). The root pieces were mounted in lacto phenol or 50% glycerine. It is necessary to press gently the cover slip to flatten the root pieces.

5. The Calculation of percentage of AM infection:

Percent of root colonization = Number of root segments colonized/Number of root segments observed x 100

6. Spore separation and quantification:

Quantification and separation of VA-mycorrhizal spores from each medicinal plant rhizospheric soil sample was done by using wet sieving and decanting method¹². Permanent slides were prepared for further work²³. Glue can be used for the same purpose in absence of PVLG³.

7. Identification of VA-mycorrhizal spore:

Based upon hyphal attachment, colour, size, shape, structure and compound microscopic character spores were identified. For identification and nomenclature INVAM's¹⁹ World Wide Web site at http://invam.caf.edu was used.

Ghosh and Verma

Int. J. Pure App. Biosci. 3 (6): 137-149 (2015) RESULTS AND DISCUSSION

Physico-chemical analysis of collected rhizospheric soil samples revealed that the soil is acidic in all seasons but organic matter showed maximum value during rainy season (Table 1). Moisture content decreased in winter but increased in rainy season whereas pH increased during winter but less in rainyseason which showed negative correlation with VAM colonization (Bargraph 1). A total 54 species of vascular medicinal plants were screened for mycorrhizal colonization. Among them 54 species belonged to 26 different families (Table 2). Out of these 51 plants from 25 families were found mycorrhizal. The roots of the host plants which were not found colonized with AM fungi were Achyranthes aspera L and Chrozophora plicata (Vahl) A. Juss. ex Spreng, Coldenia procumbens L. VA mycorrhizal colonization was indicated by the presence of hyphal networks, arbuscules, vescicles, and endospores. Highest percentage of colonization was observed in rainy season and lowest in summer which is similar to Bouamri et al^7 ., Ghosh, et al^{15} . Monsoon is the prime period of vegetative growth of herbs and seedlings in the lateritic forest soil. Increase of root colonization level during rainy season clearly correlated with vegetative growth period of studied herbaceous medicinal plants. This indicated that the VA mycorrhizal association were well established and functional at the time when plants required higher nutrients supply to support their enhanced metabolic activities synchronised with higher water availability and lower surrounding temperature^{2,6,7,35}. In summer and late winter, colonization level decreased indicating that a well-established symbiosis is not as essential during maturation period of plants as during vegetative growth period. Soil Phosphate showed negative correlation with colonization percentage of plant^{22,37} but it did not affect spore density. These results suggest that the seasonal trend in VAM fungal colonization may be influenced by plant phenological events, specifically flowering, fruiting and by available P concentration^{7,33}. During rains soil organic matter (SOM) increased along with the mycorrhizal infection percentage in almost every mycorrhizal medicinal plant, so SOM and VA mycorrhizal colonization percentage showed positive correlation (Bargraph1).

Colonization % versus different soil parameters in differnt seasons								
-								
_								
	1							
	Colonization	PH	Phosphorus	Som				
Summer	53	5.39	25	2.31				
Winter	78	5.15	20	2.41				
		5.09	20	2.45				

Bargraph 1.Correlation of VAM	colonization with pH,Phos	phorus, SOM in case of Aegle	sp.
	· · · · · · · · · · · · · · · · · · ·	F88 -- 88 -- 8888888888 -- 888 -- 8 -- 88 -- 88 -- 8 -- 88 -- 8 - 8	~ r ··

Spore density increased to its peak in winter and least in rainy seasons followed by the work of Sambandan³⁴, 2014 (Table 3). It demonstrated that there is positive relationship between VAM sporulation level and water availability^{11,25}. *Aegle marmelos* showed highest colonization % (99%) followed by *Cassia occidentalis* and *Crotalaria pallida* where percentage of infection was 97% and 92% respectively during monsoon. During winter they also got 1st, 2nd and 3rd position in case of percentage of infection. Lowest % of infection (10 %) was seen in *Melochia corchorifolia* L., during monsoon. *Cassia occidentalis* L. showed highest % of spore density (390/100 gm rhizospheric soil) during winter. Temperature and moisture fluctuations with different seasons influenced the AM spore population and

Ghosh and Verma

Int. J. Pure App. Biosci. 3 (6): 137-149 (2015)

ISSN: 2320 – 7051

root colonization directly or indirectly²⁹. The VA mycorrhizal spore count showed no significant or positive correlation with the root colonization percentage²⁴. Spore density showed no significant correlation with P^H. The spore density was in between 380 to 02/100gm soil. The major spore population belonged to *Glomus* sp. followed by *Scutellospora* sp., *Aculospora* sp. and *Gigaspora* sp. The predominance of various *Glomus* spp. appeared to be general observation reported under curtained ecosystem by others also including medicinal plants^{24,28,32}. *Glomus* indicated high adaptive mechanism for associations with various medicinal plants of deciduous lateritic southwest Bengal forest floor.

Seasons	pН	Moisture	Organic	Soil	Nitrogen	K ₂ O	P_2O_5	Spores
		content	Carbon	Organic	%	ppm	ppm	Density/100gm
		of Soil	%	Matter %				soil
Monsoon	5.09 ± 0.003	12±0.012	1.41	2.45	0.12	96	20	180
Winter	5.15±0.015	7±0.016	1.39	2.41	0.12	85	20	380
Summer	5.39±0.003	2±0.013	1.33	2.31	0.11	94	25	270

Table 1: Soil properties in Dhara of Gar-Panchakot, Purulia District, West Bengal, India

Value=Mean±SE

S. No.	Name of plant/Family	Parts used	Uses	Active principle	Rainy	Winter	Summer
1.	Achyranthes aspera L. (Apang-Beng.) /Amaranthaceae	Whole plant, Leaves.	Used in cough and its decoction is given in renal dropsy and bronchial infection	Achyranthes Protein (AP)	Nil	Nil	Nil
2.	Aegle marmeolos Corr. (BelBeng)/ Rutaceae	Fruit pulp and Leaves.	Used in Chronic diarrhoea, dysentery, Half ripe fruit is used as an astringent, digestive, stomachic and in diarrhoea.	Furoquinolin, furo- coumarins.	99	78	53
3.	Alternanthera sessilis (L.) R.Br ex DC. (Ghora- Beng.) Amaranthaceae	Whole plant	Leaves used as vegetable .It's decoction used as diuretic, tonic and it has cooling antioxidant, thrombolytic and wound healing property	β carotene, Phenol, Flavonoids	Nil	13	12
4.	Alysicarpus vaginalis (L.) DC./ Fabaceae	Whole plant	Root juice used in fever, cough;leaf extract anticancerous, antioxidant, antiproliferative	Phenolics	45	40	22
5.	Andrographis paniculata (Burm.f.)Wall.ex Nees./ Acanthaceae	Whole plant	Leafe juice used as liver tonic, Whole plant used to treat high blood pressure and anthelmintic	Andrographolide,	58	49	44
6.	Anisomeles indica O. Kuntze (Bantulsi-Beng) Lamiaceae	Leaves.	Carminative, Astringent.	Acetylated flavones, glucoside and epigenin	72	68	63%
7.	Atylosia Scarabaeoides (L.) Benth Fabaceae	Root	Rheumatism	Terpenoids, caryophyllene	50	40	23
8.	Blumea lacera DC. (Kuksima -Beng.)/ Compositae/Asteraceae	Leaves	Plant astringent, stomachic antispasmodic, antipyretic, diuretic	Apinene, Humulene, E-b- farnesene.	51	43	121
9.	Boerhaavia diffusa L. (Punarnava –Beng.)/ Nyctaginaceae	Whole plant.	Drug possesses diuretic properties, and is used in dropsy, and also recommended for asthma	Punarnavine	76	76	29
10	CalotrpisproceraDryandexW. Ait.=AsclepiasproceraWilld.(kundi-Beng.)Asclepiadaceae	Root bark and Flowers.	Used in dysentery, acts as substitute for ipecacuanha, diaphoretic, expectorant, emetic and is valuable remedy in skin	n-Heptanoic acid, methyl ester, n- decanoic acid and n-nonanoic acid methyl ester.	50	43	42

Gh	nosh and Verma	Int. J	. Pure App. Biosci. 3 (6): 1	137-149 (2015)	IS	SN: 2320	- 7051
			diseases. Tincture of leaves is used in intermittent fevers and powederd flowers in cold, cough and asthma.				
11	Cardiospermum helicacabum L. (Sibjhul –Beng.) Sapindaceae	Whole plant.	Whole plant is recommended for stiffness of limbs and rheumatism; leaf-juice is used as cure for ear-ache.	Saponin, traces of alkaloids, flavonoids, proanthocyanidin, apigenin, phytosterols (e.g. Stigmasterol.)	57	44	32
12	<i>Cassia occidentalis</i> L. Caesalpiniaceae	Root	Dried roots with tea used as laxative	Anthraquinone, root contain emodin, seed chrysarobin and N- methylmorpholine	97	77	62%
13	Coldenia procumbens L. (Bakim -Beng.)/ Ehretiaceae	Leaves.	Fresh leaves are ground and applied to rheumatic swellings.	Steroid.	nil	nil	Nil
14	Chrozophora plicata (Vahl) A. Juss. Ex Spreng/ Euphorbiaceae	Stem and whole plant	Used against ulcer	Flavonoids	nil	nil	Nil
15	Croton bonplandianum Baill./'Euphorbiaceae	Leaves	Controll high blood pressure, used against skin diseases, cuts and wonds	Alkaloids,Flavonoi des,saponins, steroids, resins, Rutin etc.	72	62	60
16	<i>Crotalaria pallid</i> Aiton (ban atasi –Beng) Fabaceae	Whole plant, seeds	Urinary problems, fever, eczema, skin infection	Pyrrolizidene alkaloids such as mucronatine, monocrotaline	92	71	45
17	Cynodon dactylon (L.) Pers. (Durba - Beng./Bermuda grass)/ Poaceae	Whole plant	Fresh juice applied on cut portion to check bleeding in man and animals. It stops hair ripening and hair loss.	Ergotamine, novinine alkaloids and glycosides. Hydroquinone, levoglucosenone, furfural, hexadecanoic acid also present	55	50	23
18	Desmodium gangeticum DC. (Salpani-Beng.) Fabaceae	Roots and Seeds.	Roots and seeds are used as febrifuse and anti- catarrhalic medicine. It has also antipyretic property.	Alkaloids, terpenopids, phenols, steroids and tannin.	88	72	54
19	<i>Desmodium triflorum</i> DC. Fabaceae	Whole plant	Liver congestion, chronic ulcers and dysentery, diarrhea, Urinary retention , snake bite poisonin (Russell's viper	Urosolic acid, vitexin, genistin, flavonoids and alkaloids (Hypaphorine, betanine).	51	45	43
20	Eclipta prostrate L. (Kesut-Beng.) Asteraceae	Whole plant	Best remedy for hair loss,astringent,deobstruen t,emetic,depurative, febrifuge, ophthalmic,purgative,styp tic	Wedelolactone alkaloid nicotine and ecliptine, caumarin	42	40	10
21	<i>Eupatorium odoratum</i> L./ Asteraceae	Leaves	Anthelmintic, antimicrobial, antifungal and wound healing	Alkaloids, tannins	61	52	47
22.	Euphobia hirta L. (Laldudhi -Beng.) Euphorbiaceae	Whole plant.	Flower and fruit plants constitute a drug which is used in bronchial affections, cough, and asthma, in removing worms in children and in bowel complaints. Latex of plant is applied on	Alkanes, tri-erpenes, phytosterols, tannins, polyphenols, flavonoids	57	55	54
23	Evolvulus numularius	Whole plant	warts. Antibacterial and anti	Beta- sitosterol,	59	51	47

Gł	nosh and Verma	Int. J	. Pure App. Biosci. 3 (6): 1		IS	SN: 2320 -	- 7051
	(L.) L. Convolvulaceae		oxidant activity	glucoside, stigmasterol, d-mannitol, ursolicacid, oleanolic acid			
24	Glinus oppositifolius (L.) A.DC. Molluginaceae	Leaves, whole plant	Stomachic, aperients, antiseptic, used in skin diseases and for suppression of the lochia. Juice useful for ich and other skin diseases	Spergulagenic acid, spergulageninA,sap ogenin,glycoside.	27	25	24
25	Helicteres isora Linn. (petmochra-Beng) Sterculiaceae	Roots and stem barks, fruits	Rich sources of nutrients and anti- oxidant Root and stem bark is used as expectorant, demulcent and as astringent. It is used to treat diarrhea, dysentery and biliousness. It is also an anti-diabetic and anti-pyretic plant.	Gallic acid, Caffeic acid, vanillin, Betulic acid, daucosterol, sitosterol, Isorin.	70	68	43
26	Hemigraphishirta(Vahl.) T Anderson/Acanthaceae	Whole plant	Belly pain of quadruped, shigellosis	Lupeol, beta- sitosterol	41	35	32
27	Hemisdesmus indicus (L.) R. Br./ Asclepiadaceae	Roots	Roots are used as substitute of Sarsaparilla; as tonic, diuretic, diaphoretic and demulcent.	p-methoxysalisylic aldehyde, coumarins, flavonoids, triterpenes, pregnane glycoside, polyphenols, and sterols.	39	30	25
28	Herpestis chamaedryoides Kunth / Scrophulariacea	Whole plant	Leaf extract ameliorates hypobaric hypoxiainduced and reduces nervous disorder.	Neurostimulant	51	45	34
29	Hewittia bicolour (Vahl.) Wight & Arn./ Convolvulaceae	Leaves	Used in Sores, diuretic and used for arthritic pain	Terpens,glycosids	67	61	15
30	Hybanthus enneaspermus (L.)F.Muell./ Violaceae	Leaves and roots.	Leaves are used as demulcent. Roots are used in bowel complaints of children	Alkaloids, steroids and carbohydrates	30	21	15
31	Indigofera tinctoria L. (Bannil-Beng.) Fabaceae/Papilionaceae.	Leaves .	Leaf juice is used as prophylactic against hydrophobia. Extract of plant is useful in epilepsy and nervous disorders, also used in bronchitis, and as ointment in sores, ulcers and haemorrhoids	Coumarinand indirubin.	54	47	29
32	Ichnocarpus frutescens Ait. & Ait. (Dudhilata- Beng.) /Apocynaceae	Roots.	Roots are used as substitute of Indian Sarsaparialla (Hemidesmusindicus	Alkaloids, glycosides, steroids, flavonoids and tannins	77	75	40
33	Jatropha gossypifolia L. (Lal Bherenda- Beng.)/ Euphorbiaceae	Twigs	Twigs having antibiotic activity against Escherichia coli.	propacin, caumarinolignoid	69	54	33
34	Lantana camara L. (Putki-Beng.)/ Verbenaceae	Bark, stem and Leaves.	Bark is astringent and used as lotion in impetiginous eruptions, leprous ulcers and obstinate ulcers. Leaves are boiled and applied for swellings and pains of body. Alkaloidal fractions, obtained from leaves, have been found to lower blood pressure,	Lantadenes ,Essential oil, sterols, glycosides and saponins, tri-terpenoids, oleanonic acid, oleanolic acid	67	52	38

Gh	nosh and Verma	Int. J	. Pure App. Biosci. 3 (6): 1	137-149 (2015)	IS	SN: 2320	- 7051
			accelerate deep respiration and stimulate intestinal movements in experimental animals.				
35	Leucas aspera Spreng. (Halkush-Beng)/ Lamiaceae	Leaves.	Juice mixed with honey, flowers are used for cough and cold. An alcoholic extract of leaves shows antibacterial activity.	Flavonoids.	46	41	23
36	Ludwigia perrenis L. (ban labanga-Beng) Onagraceae	Root	Anti-cancer , fever, against aching gums	Betulonic acid, gallic acid, quercetin	42	24	21
37	<i>Marselia quadrifolia</i> L. (susni sak- Beng) Marsiliaceae	Leaves	Cough, bronchitis, diabetes, psychiatric diseases, eye diseases, diarrhoea and skin diseases	Steroids , saponins	60	52	19
38	Melochia corchorifolia L. (Tikiokra-Beng.)/ Sterculiaceae	Leaves and stem.	Boiled in oil and used for the remedy for preventing bad consequences from bites of water snakes.	Leaves contain triterpenes :friedelin, friedelinol, and beta-amyrin, flavonolglycoside: hiibifolin.	10	10	06
39	Ocimum basilicum L. /(Bantulsi-Beng.) Lamiaceae	Seeds.	Antibacterial, antifungal, digestive, carminative	methyl havicol, eugenol, limonene	61	70	64
40	Passiflora foetida L. (Ban-jhumkolata-Beng.) /Passifloraceae	Roots, Leaves	Antibacterial	Flavonoids(Pachyp odols), epigenin, indole alkaloids, hydrogen cyanide and cyanogenic glycosides.	52	48	31
41	Phylla nodifloraL.(Bhui ochre-Beng.)/Euphorbiaceae	Leaves	Treatment of hook worm, wounds, burning sensation	Onopordin, eupafolin	82	61	60
42	Phyllanthus amarus Schum. & Thonn./ Euphorbiaceae	Leaves	Improvement of libido in men, treatment of jaundis	Flavonides, tannins,alkaloids, steroids, cardiac glycosoids	76	51	51
43	Phyllanthus simplex Retz./ Euphorbiaceae	Leaves	Antioxidant , anti- inflamatory	Gelleic acid, caffeic acid, phenolic components	52	40	39
44	<i>Ruellia prostrate</i> Poir./ Acanthaceae	Tuberous root	Diuretic, coughs, cold and flu	Steroids and terpenoids	47	40	40
45	<i>Scoparia dulcis</i> L. (Chinipata-Beng.)/ Scrophulariaceae	Leaves	An infusion of leaves is used in fever, cough and bronchitis, and as a gargle for toothache. Leaves and stems are used in diabetes.	Scopadulcicacid A, B, scoparic acid A- C, ammelin	67	57	51
46	<i>Sida cordata</i> (Burm. f.) Borss. Waalk./ Malvaceae	Leaves	Leaf stop bleeding from cuts and wounds, and antioxidant	Flavonoids, phenolics.	57	50	47
47	sida cordifolia L. (Kungyi –Beng.)/ Malvaceae	Seeds, leaves, roots	Seeds possess demulcent and laxative properties and are used in bowel complaints, anti- inflammatory and analgesic, blood purifier, anti-diabetic	Alkaloid , essential oil, ephedrine, vasicinone, vasicine, vasicinol.	40	34	18
48	<i>Spermacoce hispida</i> Linn. / Rubiaceae	Seeds, roots	Anti- diabetic, anti- hypertensive, hepatoprotective, analgesic, anticancer, antioxidant.	Saponins, tannins, phenolics, steroids, essential oil, flavonoids and terpenoids	51	43	22
49	Spilanthes oleracea L./ Asteraceae	Whole plant	Fresh and dried plant is recommended for	Spilanthol, triterpens	84	72	51

Gh	osh and Verma	Int. J	. Pure App. Biosci. 3 (6): 1	37-149 (2015)	IS	SSN: 2320	- 7051
			toothache, scurvy and gum troubles, leaves and flowers used traditionally for stammering , toothache and stomatitis				
50	Sphaeranthus indicus L. (Chagalboti-Beng.)/ Asteraceae	Whole plant	Juice of the plant is reported to be useful in liver and gastric disorders. Powdered seeds and roots are used as an anthelmintic and decoction of roots is considered to be useful in chest pains, cough and bowel complaints.	Eudesmanolides, sesquiterpenoids, flavonoids, sterols alkaloids etc.	47	46	34
51	Stephania japonica (Thunb.) Miers. /Menispermaceae	Tuber, leaves	Tubers are used for fever, diarrhea and stomachache, leaves are antioxidant, analgesic and antimicrobial.	Steroids, saponins, flavonoids, alkaloids such as aknadinine, husbanonine	67	62	56
52	<i>Teramnus labialus</i> Spreng.(Mashaparni- Beng.) Fabaceae/Papilionaceae	Whole plant	Antioxidant, used in treating rheumatism, tuberculosis, nerve disorder, paralysis and catarrhs.	Flavonol glycoside	50	37	21
53	Tridax procumbens L. (tridaksha – Beng.)/ Asteraceae	Whole plant	Antidysenteric, anti diarrhoel and juice used as styptic in bleeding wounds, i.e. anticoagulant, also used as anti fungal, insect replant, hair tonic, bronchial catarrh.	Flavonoid (procumbenetin, procumbetin), sterols,	85	35	35
54	Xanthium strumarium L./ Asteraceae	Roots, leaves, fruits and seeds	Used as astringent, emollient, sedative, diuretic, sialagogue, anti- scrophulous, and strongly diaphoretic, given in long standing malarial fever	Glucosides – Xanthostrumarin	70	66	60

Table 3: Spore density per 100 gm processed soil collected from Dhara, Gar-Panchakot, Purulia

S.No.	Name of plant infected by VAM fungi	Family of the	Rainy	Winter	Summer
		Plant	season	season	season
			Spore/100g	Spore/100g	Spore/100g
			soil	soil	soil
1.	Achyranthes aspera L.	Amaranthaceae	8	031	20
2.	Aegle marmeolos Corr.	Rutaceae	170	370	230
3.	Alternanthera sessilis(L.) R.Br ex DC	Amaranthaceae	10	120	90
4.	Alysicarpus vaginalis	Fabaceae	170	230	200
5.	Andrographis paniculata	Acanthaceae	160	350	250
	(Burm.f.)Wall.ex Nees.				
6.	Anisomeles indica O. Kuntze	Lamiaceae	160	310	230
7.	Atylosia Scarabaeoides (L.) Benth	Fabaceae	198	310	280
8.	Blumea lacera DC.	Compositae	120	380	215
9.	Boerhaavia diffusa L.	Nyctaginaceae	175	310	230
10	Calotrpis procera Dryand ex W. Ait	Aesclepiadace	132	340	290
11	Cardiospermum helicacabum L.	Sapindaceae	110	378	210
12	Cassia occidentalis L.	Fabaceae	135	390	250
13	Coldenia procumbens L. F	Ehretiaceae	02	09	04
14	Chrozophora plicata (Vahl) A. Juss.	Euphorbiaceae	02	14	09
	Ex Spreng	_			
15	Croton bonplandianum Baill.	Euphorbiaceae	142	379	224
16	Crotalaria pallid Aiton	Fabaceae	196	343	256

Ghosh	and Verma Int. J. Pure	App. Biosci. 3 (6): 13	7-149 (2015)	ISSN: 2320 – 7051		
17	Cynodon dactylon (L.) Pers.	Poaceae	159	347	290	
18	Desmodium gangeticum DC.	Fabaceae	178	350	221	
19	Desmodium triflorumDC.	Fabaceae	100	320	250	
20	Eclipta prostrate L.	Asteraceae	130	290	200	
21	Eupatorium odoratum Linn.	Asteraceae	140	300	210	
22	Euphobia hirta L.	Euphorbiaceae	120	290	230	
23	Evolvulus numularius (L.) L.	Convolvulaceae	110	230	200	
24	Glinus oppositifolius (L.)A.DC.	Molluginaceae	90	200	190	
25	Helicteres isora Linn.	Sterculiaceae	120	319	240	
26	Hemigraphis hirta (Vahl.) T Anderson	Acanthaceae	150	300	210	
27	Hemisdesmus indicus (L.) R. Br.	Asclepiadaceae	170	300	198	
28	Herpestis chamaedryoides Kunth	scrophulariaceae	146	298	180	
29	Hewittia bicolour (Vahl.) Wight & Arn.	Convolvulaceae	130	300	200	
30	Hybanthus enneaspermus (L.)F.Muell.	Violaceae	190	270	190	
31	Indigofera tinctoria L.	Fabaceae.	134	300	210	
32	Ichnocarpus frutescens Ait. & Ait.	Apocynaceae	180	340	240	
33	Jatropha gossypifolia L.	Euphorbiaceae.	170	320	220	
34	Lantana camara L.	Verbenaceae	170	320	200	
35	Leucas aspera Spreng.	Lamiaceae.	170	290	210	
36	Ludwigia perrenis L.	Onagraceae	160	270	200	
37	Marselia quadrifolia L. eng)	Marsiliaceae	160	300	210	
38	Melochia corchorifolia L.	Sterculiaceae	80	200	150	
39	Ocimum basilicum L.	Lamiaceae.	190	320	240	
40	Passiflora foetida L.	Passifloraceae.	150	310	220	
41	Phylla nodiflora L.	Euphorbiaceae	190	330	260	
42	Phyllanthus amarus Schum. & Thonn.	Euphorbiaceae	130	300	200	
43	Phyllanthus simplex Retz.	Euphorbiaceae	110	310	230	
44	Ruellia prostrate Poir.	Acanthaceae	90	290	210	
45	Scoparia dulcis L.	Scrophulariaceae	130	300	280	
46	Sida cordata (Burm.f.) Borss. Waalk.	Malvaceae	120	310	210	
47	sida cordifolia L.	Malvaceae	80	290	/160	
48	Spermacoce hispida L.	Rubiaceae	100	310	160	
49	Spilanthes oleracea Murr.	Asteraceae	140	320	190	
50	Sphaeranthus indicus L.	Asteraceae	90	250	210	
51	Stephania japonica (Thunb.) Miers var. discolor	Menispermaceae	140	340	210	
52	Teramnus labialus Spreng.	Fabaceae	110	310	200	
53	Tridax procumbens L.	Asteraceae	160	280	210	
54	Xanthium strumarium L.	Asteraceae	180	320	254	

PHOTOPLATES

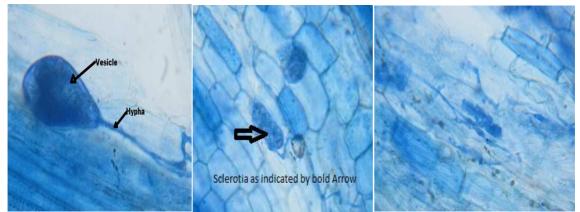


Fig. 1: Vesicle of VAM fungi, Fig. 2: Sclerotia of endophytes, Fig. 3: Arbuscules of VAM fungi

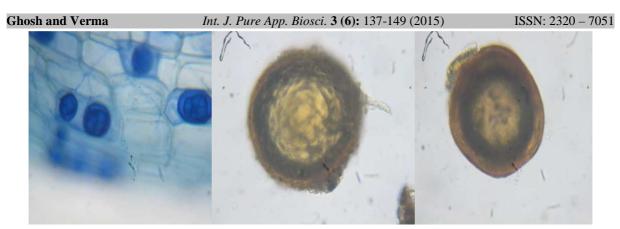


Fig. 4: Internal Spores of VAM fungi, Fig. 5: Spore of Glomus sp.1, Fig. 6: Spore of Glomus sp.2

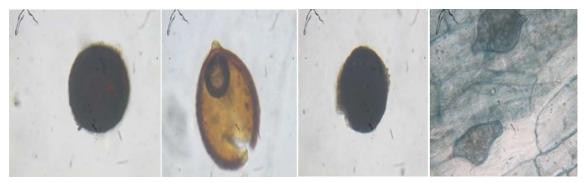


Fig. 7: Acaulospora sp., Fig. 8: Spore of Glomus sp.3, Fig. 9: Spore of Glomusnigra, Fig. 10: Vesicle of Acaulospora sp.

Figure: Author in field

Acknowledgements

The authors convey their sincere thanks to the forest fringe people of Dhara, Purulia, West Bengal for cordial help as and when required. Thanks are also to the library authorities, Vidyasagar University, Midnapore for giving permission to study at Journal and periodical section. A special thanksto Sri MansaramMurmu of Shyampur Village, Puruliafor rendering help to collect specimens during field. Research Scholars and staff of the Department of Botany & Forestry, Vidyasagar University are well acknowledged. Thanks are also to the heads of the same Department and Department of Microbiology for giving laboratory facilities as and when required. Department of Tea Science, North Bengal University is well acknowledged for soil part analysis.

REFERENCES

- 1. Al Karaki, G., Mc Michael, B. and Zak, J., Field response of wheat to arbuscular mycorrhizal fungi and drought stress, *Mycorr.*, **14**: 263-269 (2004).
- 2. Anderson, R.C., Liberta, A.E.and Dickman, L.A., Interaction a soil of vascular plants and Vesicular arbuscular mycorrhizal fungi across a soil moisture-nutrient gradient, *Oecol.*, **64**: 111-117 (1984).
- 3. Anonymous,. Practical Methods in Mycorrhiza Research, Editede by Brundrett, M; Melville, L; Peterson, L, based on a workshop organised in conjunction with the 9th North American Conference on Mycorrhizae Uni. of Guelph, Guelph, Ontario, Canada. (1994).
- 4. Auge, R.M., Duan, X.G., Ebel, R.C. and Stodola, A.J.W., Non hydraulic Signalling of soil drying in Mycorrhizal maize, *Planta.*,**193**: 74-82 (1994).
- 5. Basu, M. and Srivastava, N.K., Root endophytes in medicinal plants, their population and effect ICCP 98 G.T.S. Baylin, 1967, Experiments on the ecological significance of phycomycetous mycorrhizas, *New Phytol.*, **66**: 231-243 (1998).
- 6. Bohrer, K.E., Friese, C.F. and Amon, J.P., Seasonal dynamics of arbuscularmycorrhizal fungi in differing wetland habitats, *Mycorr.*,**14**: 329-337 (2004).
- 7. Bouamri, R., Dalp', Y. and Serrhini, M.N., Effect of seasonal variation on arbuscular mycorrhizal fungi associated with date palm, *Emir. J. Food Agric.*, **26**(11): 977-986 (2014).
- 8. Carrillo-Garcia, A., Leo n de la Luz, J.L., Bashan, Y. and Bethlenfalvay, G.J., Nurse plants, mycorrhizae, and plant establishment in a disturbed area of the Sonoran Desert, *Restor. Ecol.*,**7**: 321-335 (1999).
- 9. Chakraborty, M.K. and Bhattacharjee, A., Some common ethnomedicinal uses for various diseases in Purulia district, West Bengal, *Indian Journal of Traditional Knowledge*, **5**(4): 554-558 (2006).
- 10. Das, D.,. Study of Vegetation Ecology of Forests of Southwest Bengal with special reference to Non-Timber forest produce (NTFP) productivity, Ph.D. Thesis awarded from Vidyasagar Universitty, Midnapore, Paschim Medinipur, with Centre for Natural Studies, Gope Palace, Midnapore and Botanical Survey of India, Shibpore, Howrah, West Bengal. (2007).
- 11. Gemma, J.N., Koske, R.E. and Carreiro, M., Seasonal dynamics of selected species of VA-mycorrhial fungi in a sand dune, *Mycol. Res.*, **92:** 317-321 (1989).
- 12. Gerdemann, J.W. and Nicolson, T.H., Spores of Mycorrhizal Endogone Species extracted from soil by wet sieving and decanting, *Transaction of British Mycological society*, **46**: 235-244 (1963).
- 13. Gerdemann, J.W., Vesicular-arbuscular mycorrhiza and plant growth, *Ann. Rev. Phytopath.*, **6:** 379-418 (1968).
- 14. Giovannetti, M. and Mosse, B., An evaluation of techniques for measuring Vesicular Arbuscular Mycorrhizal infection in root, *New Phytologist.*, **84:** 489-500 (1980).
- 15. Ghosh, S. and Verma, N.K., Seasonal variation of arbuscular mycorrhizal status in rhizosphere of six plantation species grown in red lateritic soil of southwest Bengal, *J. Mycopathol Res.*, **42(2)**: 229-232 (2004).
- 16. Ghosh, P., Vesicular Arbuscular Mycorrhizal (VAM) Status of some important medicinal plants from forests of Joypore, Bankura, West Bengal, *IJIRD*, **1**: 52-57 (2014).
- 17. Habte, M., Zhang, M.C. and Schmitt, D.P., Effectiveness of Glomus species in protecting white clover against nematode damage, *Can. J. Bot.*, **77:** 135-139 (1999).
- 18. Hamilton, A.C., Medicinal plants, conservation and Livelihoods, *Biodiversity Conservation*, **13(8)**: 1477-1577 (2004).
- 19. INVAM's World Wide Web site at http:/invam.caf.edu
- 20. Jaiti, F., Meddich, A. and El Hadrami, I., Effectiveness of arbuscular mycorrhizal fungi in the protection of date palm (*Phoenix dactylifera* L.) against bayoud disease, *Phys. Mol. Plant Path.*, **71**: 166-173 (2007).
- 21. Jaizme-Vega, M.C., Tenoury, P., Pinouchet, J. and Jaumot, M., Interactions between the root knot nematode Meloidogyne incognita and *Glomus mosseae* in banana, *Plant Soil*, **196**: 27-35 (1997).

Ghosh and Verma

- 22. Koide, R.T., Physiology of the mycorrhizal plants, Adv. Plant Path., 9: 33-54 (1993).
- 23. Koske, R.E. and Tessier, B., A convenient, permanent slide mounting medium. *Mycol. Soc. Am.Newsl.*, **34:** 59 (1983).
- 24. Koul, K.K., Agarwal, S. and Rafiq, L., Diversity of Arbuscular Mycorrhizal Fungi Associated with the Medicinal plants from Gwalior_Chambal region of Madhya Pradesh, India., *American- Eurasian J. Agric. and Environ, Sci.*, **12(8):** 1004-1011 (2012).
- 25. Lugo, M.A. and Cabello, M.N., Native arbuscular mycorrhizal fungi (AMF) from mountain grassland (Cordoba, Argentina) I. Seasonal variation of fungal spore diversity, *Mycol.*, **94(4)**: 579-586 (2002).
- 26. Mc Gonigle, T.P., Miller, M.H., Evans, D.G., Fairchild, G.L. and Swan, J.A., A new method which gives an objective measure of colonization of roots by Vesicular Arbuscular Mycorrhizal fungi, *New Phytol.*, **115**: 495-501 (1990).
- 27. Miyasaka S.C., Habte, M., Friday, J.B. and Johnson, E.V., Manual of Arbuscular Mycorrhizal fungus production and Inoculation Techniques, *Soil and Crop Management*, CTAHR, SCM-5: 1-4 (2003).
- 28. Muthuraj, K., Prasad Joseph, V.J. and Nagarajan, N., Arbuscular Mycorrhizal Fungal Diversity and root colonization of some Medicinal plants Rhizospheric soil of Madayipara Hills, Kannur, Western Ghat Kerala, *World Journal of Pharmacy and Pharmaceutical Science*, **3**(6): 1114-1122 (2014).
- 29. Pawar, J.S. and Kakde, U.B., Screening of some important medicinal plants and Rhizosphere for arbuscular mycorrhiza of Mumbai Region, *Life Science leaflets*, **8**: 08-18 (2013).
- Philips, J.M. and Hayman, D.S., Improved procedures for clearing root and staining parasitic and Vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection, *Trans. Brit. Mycol. Soc.*, 55: 158-161 (1970).
- 31. Powel, C. and Bagyaraj, D.J., VA Mycorrhiza, C R C Press, Flodida.; USA.pp:121. (1984).
- 32. Ram, U. and Bhadauria, S., Vesicular-arbuscular mycorrhizal association with some medicinal plants growing on alkaline soils of Manipuri District, Uttar Pradesh, *Mycorrhiza News*, **13**: 12-14 (2009).
- 33. Ruotsalainen, A.L., Väre, H. and Vestberg, M., Seasonality of root fungal colonization in low-alpine herbs, *Mycorr.*, **12**: 29-36 (2002).
- 34. Sambandan, K., Studies on Arbuscular Mycorrhizal (AM) profiles of costal soils in Karaikal District, U.T of Puducherry, India, *International Journal of Multidisciplinary and Current Research*, 2: 307-312 (2014).
- 35. Sanders, I.R. and Fitter, A.H.,. The ecology and functioning of vesicular-arbuscular mycorrhizas in co-existing grassland species II. Nutrient uptake and growth of vesicular –arbuscular mycorrhizal plants in a seminatural grassland, *New Phytol.*, **120**: 525-535 (1992).
- 36. Sing, M.P. and Vyas, D.D., Mycorrhozation in Medicinal Plants, *Mycorrhizal News*, 23: 14-21 (2011).
- 37. Smith, S.E. and Read, D.J., Mycorrhizal symbiosis, 2nd Ed. Academic Press, London (1997).
- 38. Smith, S.E. and Read, D.J., Mycorrhizal Symbiosis, 3rd Edition, Academic Press, London. (2008).
- 39. St-Arnaud, M., Hamel, C., Vimard, B., Caron, M. and Fortin, J.A., Altered growth of *Fusarium* oxysporum f. sp. chrysanthemi in an in vitro dual culture system with the vesicular arbuscular mycorrhizal fungus, *Glomus intraradices* growing on *Daucuscarota* transformed roots. *Mycorr.*,5: 431-438 (1995).
- 40. Sylvia, D.M. and Williams, S.E., Vesicular arbuscular mycorrhizae and environmental stress. In: Bethlenfalvay, (1992).
- 41. Tao, L. and Zhiwei, Z., Arbuscular mycorrhizas in a hot and arid ecosystem in southwest China, *Appl. Soil Ecol.*, **29:** 135-141 (2005).
- 42. Trappe, J.M., Phylogenetic and ecological aspect of mycotrophy in the angiosperms from and evolutionary stand point, Eco. Physiology of VA mycorrhizal plants. Gene. R. Saffir. C R C press Raton, Fl, pp: 244. (1987).
- 43. Utobo, E.B., Ogbodo, E.N. and Nwogbaga, A.C., Techniques for Extraction and Quantification of Arbuscular Mycorrhizal Fungi, *Libyan Agriculture Research Centre journal International*, **2**(2): 68-78 (2011).

- 44. Vierheilig, H., Coughhlan, A.P., Wyss and Picge, Y., Ink and vinegar, a simple staining technique for arbuscular mycorrhizal fungi, *Appl. Environ. Microbial.*,**64:** 5004-5007 (1998).
- 45. Zubek, S. and Blaszkowski, J., Medicinal plants as hosts of arbuscular mycorrhizal fungi and dark septate endophytes, *Phytochem. Rev.*, **8:** 571-580 (2009).
- 46. Zubek, S., Blaszkowski, J., Seidler-Lozykowska, K., Wojciech, B. and Mleczko, P., Arbuscular Mycorrhizal Fungi Abundance Species Richness and Composition under the Monocultures of five Medicinal Plants, *Acta Sci. Pol. Hortorum Cultus*, **12**(5): 127-141 (2013).